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1. Introduction. In their seminal paper [4], Bramble and Pasciak introduced
the idea of applying the preconditioned conjugate gradient (PCG) iteration to sym-
metric indefinite saddle point problems

(1.1)

(
A B�

B 0

)(
x
q

)
=

(
f
g

)
,

where A is a real, symmetric, and positive definite matrix, and B is a real m-by-n
matrix with full rank m ≤ n. The application of the PCG iteration becomes possible
through the clever use of a suitable scalar product, which renders the preconditioned
saddle point matrix symmetric and positive definite. Meanwhile, this approach has
been further developed and has become a widespread technique for solving partial
differential equations (PDEs) in mixed formulation. Very often in these applications,
A is positive definite on the whole space.

Recently, Schöberl and Zulehner [19] proposed a symmetric indefinite precondi-
tioner with the above properties for the case that A is positive definite only on the
nullspace of B:

x�Ax > 0 for all x ∈ kerB \ {0}.
This situation is natural when (1.1) is viewed as the first-order optimality system of
the optimization problem

Minimize 1/2 x�Ax− f�x subject to (s.t.) B x = g.

In fact, the authors in [19] show the applicability of their approach to discretized
optimal control problems for elliptic PDEs with no further constraints. In this paper,
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2292 ROLAND HERZOG AND EKKEHARD SACHS

we extend their technique to optimal control problems with PDEs in the presence of
control and state constraints, which are usually present in practical examples.

Since even linear inequality constraints give rise to nonlinear optimality systems,
we apply a Newton-type approach for their solution. Every Newton step is a saddle
point problem of type (1.1). Our focus is on the efficient solution of these linear
systems. Therefore we address a key component present in practically every algorithm
for the solution of constrained optimal control problems. We efficiently solve the
underlying linear systems by employing a nonstandard inner product PCG method.

Following [19], the building blocks of the preconditioner are preconditioners for
those matrices which represent the scalar products in the spacesX andQ, in which the
unknowns x and q are sought. In the context of constrained optimal control problems,
x represents the state and control variables, and q comprises the adjoint state and
additional Lagrange multipliers. Optimal preconditioners for scalar product matrices
are readily available, e.g., using multigrid or domain decomposition approaches. Due
to their linear complexity and grid independent spectral qualities, the PCG solver
also becomes grid independent and has linear complexity in the number of variables.
We use elliptic optimal control problems as examples and proof of concept, but the
extension to time dependent problems is straightforward.

The efficient solution of saddle point problems is of paramount importance in
solving large scale optimization problems, and it is receiving an increasing amount of
attention. Let us put our work into perspective. Various preconditioned Krylov sub-
space methods for an accelerated solution of optimality systems in PDE-constrained
optimization are considered in [1, 2, 3, 12, 14, 15]. None of these employs conju-
gate gradient iterations to the system (1.1). The class of constraint preconditioners
approximates only A in (1.1) and is often applied within a projected preconditioned
conjugate gradient (PPCG) method. However, preconditioners of this type frequently
require the inversion of B1 in a partition B = [B1, B2]; see [6, 8]. In the context of
PDE-constrained optimization, this amounts to the inversion of the PDE operator,
which should be avoided. Recently, in [17] approximate constraint preconditioners for
PPCG iterations were considered in the context of optimal control. It seems, however,
that their approach lacks extensions to situations where the control acts only on part
of the domain or on its boundary. An approach similar to ours is presented in [18],
where a nonstandard inner product conjugate gradient iteration with a block trian-
gular preconditioner is devised and applied to an optimal control problem without
inequality constraints. However, positive definiteness of the (1,1) block is required,
which fails to hold, for instance, as soon as the observation of the state variable in the
objective is reduced to a subdomain. The technique considered here does not have
these limitations. Finally, we mention [7], where a number of existing approaches are
interpreted in the framework of PCG iterations in nonstandard inner products.

In the present paper, we apply PCG iterations in a nonstandard scalar product
to optimal control problems with control and regularized state constraints. Through
a comparison of the preconditioned condition numbers, we find the Moreau–Yosida
penalty approach preferable to regularization by mixed control-state constraints. This
is confirmed by numerical results.

The solution of state-constrained problems in three dimensions is considered com-
putationally challenging, and numerical results can hardly be found in the literature.
Using Moreau–Yosida regularization and PCG iterations, the approach presented here
pushes the frontier towards larger problems. The largest three-dimensional (3D) prob-
lem solved has 250,000 state variables, and the same number of control and adjoint
state variables, plus Lagrange multipliers. Hence the overall size of the optimality
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system exceeds 750,000.

The plan of the paper is as follows. The remainder of this section contains the
standing assumptions. The PCG method is described in section 2. We also briefly
recall the main results from [19] there. In section 3, we address its application to the
Newton system arising in elliptic optimal control problems. We distinguish problems
with pointwise control constraints and regularized state constraints by way of mixed
control-state constraints and a Moreau–Yosida-type penalty approach. Extensive nu-
merical examples are provided in section 4. Concluding remarks follow in section 5.

Assumptions. We represent (1.1) in terms of the underlying bilinear forms:
Find x ∈ X and q ∈ Q satisfying

(1.2)
a(x,w) + b(w, q) = 〈F,w〉 for all w ∈ X,

b(x, r) = 〈G, r〉 for all r ∈ Q,

where X and Q are real Hilbert spaces. The following conditions are well known to
be sufficient to ensure the existence and uniqueness of a solution (x, q) ∈ X ×Q:

1. a is bounded:

(1.3a) a(x,w) ≤ ‖a‖ ‖x‖X ‖w‖X for all x,w ∈ X.

2. a is coercive on kerB = {x ∈ X : b(x, r) = 0 for all r ∈ Q}: There exists
α0 > 0 such that

(1.3b) a(x, x) ≥ α0‖x‖2X for all x ∈ kerB.

3. b is bounded:

(1.3c) b(x, r) ≤ ‖b‖ ‖x‖X‖r‖Q for all x ∈ X, r ∈ Q.

4. b satisfies the inf–sup condition: There exists k0 > 0 such that

(1.3d) sup
x∈X

b(x, r) ≥ k0 ‖x‖X‖r‖Q for all r ∈ Q.

5. a is symmetric and nonnegative, i.e.,

(1.3e) a(x,w) = a(w, x) and a(x, x) ≥ 0 for all x,w ∈ X.

In constrained optimal control applications, x will correspond to the state and
control variables, while q comprises the adjoint state and Lagrange multipliers asso-
ciated with inequality constraints.

Notation. For symmetric matrices, A � B means that B−A is positive semidef-
inite, and A ≺ B means that B −A is positive definite.

2. PCG method. In this section, we recall the main results from [19] and
give some algorithmic details concerning the PCG iteration. We consider a Galerkin
discretization of (1.2) with finite-dimensional subspaces Xh ⊂ X and Qh ⊂ Q. Here
and throughout, X and Q are the matrices representing the scalar products in the
subspaces Xh and Qh, respectively. Moreover, A and B are the matrices representing
the bilinear forms a and b, respectively, w.r.t. a chosen basis on these subspaces. It is
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2294 ROLAND HERZOG AND EKKEHARD SACHS

assumed that conditions (1.3a)–(1.3e) are also satisfied on the discrete level; i.e., the
following hold (see [19, equations (3.2)–(3.5)]):

A � ‖a‖X ,(2.1a)

�x�A�x ≥ α0 �x
�X�x for all �x ∈ kerB,(2.1b)

BX−1B�� ‖b‖2Q,(2.1c)

BX−1B�� k20 Q,(2.1d)

A = A�, A � 0.(2.1e)

Note that the validity of (2.1b) and (2.1d) depends on a proper choice of the dis-
cretization.

The following class of symmetric indefinite preconditioners for (1.1) is analyzed
in [19]:

(2.2) K̂ =

(
Â B�

B BÂ−1 B� − Ŝ

)
=

(
I 0

BÂ−1 I

)(
Â B�

0 −Ŝ

)
,

where Â and Ŝ are symmetric and nonsingular matrices that we define below. The
application of K̂−1 amounts to the solution of two linear systems with Â and one with
Ŝ:

K̂
(
�rx
�rq

)
=

(
�sx
�sq

)
⇔ Â�r ′

x = �sx, Ŝ �rq = B�r ′
x − �sq, Â �rx = �sx −B� �rq.

It stands out as a feature of this approach that one can simply use properly scaled
preconditioners for the scalar product matrices as building blocks for the precondi-
tioner K̂:

Â =
1

σ
X̂ , Ŝ =

σ

τ
Q̂,

where X̂ and Q̂ are suitable approximations to X and Q, respectively.
Remark 2.1. Preconditioners for scalar product matrices are usually easy to

obtain. For instance, if X = H1(Ω) is discretized by the finite element method, then
X is given by the finite element stiffness matrix associated with the weak form of the
problem

−y + y = 0 in Ω, ∂ny = 0 on ∂Ω.

In other words, Xij =
∫
Ω

(∇ϕj · ∇ϕi + ϕj ϕi

)
dx, where {ϕi} are the basis functions

of the discrete subspace Xh ⊂ X . The standard multigrid cycle yields a suitable
preconditioner with linear complexity. In case X = L2(Ω), a symmetric Gauss–Seidel
iteration for the mass matrix Xij =

∫
Ω
ϕj ϕi dx can be applied instead.

We emphasize that the preconditioners Â and Ŝ depend only on the scalar prod-
ucts in the spaces Xh (which comprises the state and control space for optimal control
applications) and Qh (which includes the adjoint state and additional Lagrange mul-
tipliers). In particular, the preconditioners do not depend on the PDE appearing
as a constraint in optimal control problems. For example, whether or not the state
equation contains convection terms or discontinuous coefficients, etc., the same pre-
conditioner can be used, albeit possibly with different scaling parameters σ and τ .
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In view of the availability of good preconditioners for X and Q, it can be assumed
that the spectral estimates

(1− qX) X̂ � X � X̂ , (1− qQ) Q̂ � Q � Q̂

are valid, with mesh independent constants qX and qQ close to zero. We recall the
following result from [19, Theorem 2.2, Lemma 3.1].

Theorem 2.2. Suppose that (2.1a)–(2.1e) hold. Let σ and τ be chosen such that

(2.3) σ <
1

‖a‖ and τ >
1

(1 − qX)(1− qQ)

1

k20

are satisfied. Then the estimates

�x�A�x ≥ α�x�Â �x for all �x ∈ kerB and Â � A

as well as

Ŝ ≺ BÂ−1 B� � β Ŝ

hold with constants

α = σ (1− qX)α0 ≤ 1 and β = τ ‖b‖2 ≥ 1.

Corollary 2.3. Under the assumptions of the previous theorem,

(2.4) 〈(�tx,�tq), (�rx, �rq)〉D = (�tx,�tq)

(
Â−A 0

0 BÂ−1B� − Ŝ

)(
�rx
�rq

)

defines a scalar product. Moreover, the preconditioned matrix K̂−1K is symmetric and
positive definite w.r.t. 〈·, ·〉D. Its condition number can be estimated by

(2.5) κ(K̂−1K) ≤ (1 +
√
5)2

2

β

α
.

The estimates above indicate that σ should be chosen as large as possible and τ
as small as possible, while still satisfying condition (2.3). A simple calculation shows
that

(2.6) κ(K̂−1K) ∼ ‖a‖
α0

(‖b‖
k0

)2

can be expected for the preconditioned condition number. This result implies that the
effectiveness of the preconditioner will depend more on the properties of the bilinear
form b and less on the properties of a.

Finding good choices for σ and τ requires some a priori knowledge of the norm
‖a‖ and the inf–sup constant k0, which may be available in some situations (see the
examples in section 3). Estimates of ‖a‖ and k0 can be found by computing the
extreme eigenvalues of a generalized eigenvalue problem; see section 4.1 for details.
In any case, too large a choice of σ or too small a choice of τ will reveal itself by
negative values of the residual norm δ+ during the PCG iteration (Algorithm 1). We
thus employ a simple safeguard strategy (Algorithm 2) to correct unsuitable scaling
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parameters.

For the convenience of the reader, the PCG method is given in Algorithm 1. It
is to be noted that the scalar product 〈·, ·〉D cannot be evaluated for arbitrary pairs

of vectors. The reason is that matrix-vector products with Â and Ŝ are usually not
available (in contrast to products with Â−1 and Ŝ−1, which are realized by applications

of the preconditioners). And thus Â�rx and Ŝ �rq cannot be evaluated unless (�rx, �rq) =

K̂−1(�sx, �sq) holds. That is, the evaluation of the scalar product is possible if one of
the factors is known to be the preconditioner applied to another pair of vectors. We
denote this situation by 〈(�tx,�tq), (�rx, �rq); (�sx, �sq)〉D. In this case, the scalar product
can be evaluated as follows:

〈(�tx,�tq), (�rx, �rq); (�sx, �sq)〉D = (�tx)
�(�sx − B��rq −A�rx) + (�tq)

�(�sq −B�rx).

As a consequence, it is necessary to maintain the relations �r = K̂−1�s and �q = K̂−1�e
throughout the iteration, which requires the storage of one extra vector compared to
common conjugate gradient implementations w.r.t. the standard inner product.

3. Application to constrained optimal control problems. In this section,
we elaborate on the preconditioned numerical solution of optimal control problems
with various types of inequality constraints. Although our examples are of linear
quadratic type, the inequality constraints render the corresponding optimality systems
nonlinear. We apply a generalized (semismooth) Newton scheme for their solution.
The resulting linear system in every Newton step is a saddle point problem of the
form (1.1).

We consider the following representative examples:

• a linear quadratic elliptic optimal control problem with pointwise control
constraints (section 3.1),

• a similar problem with state constraints, regularized by mixed control-state
constraints (section 3.2),

• and an alternative regularization by the Moreau–Yosida (penalty) approach
(section 3.3).

These regularizations were introduced in [16] and [13], respectively, and they are well-
established techniques to approximate optimal control problems with pointwise state
constraints. The need to regularize problems with state constraints arises due to the
low function space regularity of the associated Lagrange multipliers, which also has
an impact on the linear algebra. We make some further comments on this issue in
section 3.4.

Problems with more general nonlinear objective functions, state equations, or
inequality constraints can be considered as well. In this case, their first- and second-
order derivatives enter the blocks A and B. However, one has to be aware of the
fact that A may not need to be positive semidefinite, and the coercivity of A on the
nullspace of B may hold only in the vicinity of a local minimum (which is typically
guaranteed by second-order sufficient optimality conditions). In early Newton steps,
it may thus be necessary to restore the positive semidefiniteness of A and its coercivity
on the nullspace of B, e.g., by manipulating the (1,1) block, in order for the Newton
system to satisfy conditions (1.3b) and (1.3e).

In all of our examples, Ω denotes a bounded domain in R
2 or R3 with Lipschitz

boundary Γ, respectively.
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Algorithm 1. Conjugate gradient method for K̂−1K w.r.t. to scalar product D.

Input: right-hand side (�bx,�bq) and initial iterate (�xx, �xq)

Output: solution (�xx, �xq) of K (�xx, �xq) = (�bx,�bq)
1. Set n := 0 and compute initial residual(

�sx
�sq

)
:=

(
�bx −A�xx −B��xq

�bq −B �xx

)
and

(
�dx
�dq

)
:=

(
�rx
�rq

)
:= K̂−1

(
�sx
�sq

)
2. Set δ0 := δ+ := 〈(�rx, �rq), (�rx, �rq); (�sx, �sq)〉D
3. while n < nmax and δ+ > ε2rel δ0 and δ+ > ε2abs do
4. Set (

�ex
�eq

)
:=

(
A �dx +B� �dq

B �dx

)
and

(
�qx
�qq

)
:= K̂−1

(
�ex
�eq

)

5. Set α := δ+/〈(�dx, �dq), (�qx, �qq); (�ex, �eq)〉D
6. Update the solution (

�xx

�xq

)
:=

(
�xx

�xq

)
+ α

(
�dx
�dq

)

7. Update the residual(
�rx
�rq

)
:=

(
�rx
�rq

)
− α

(
�qx
�qq

)
and

(
�sx
�sq

)
:=

(
�sx
�sq

)
− α

(
�ex
�eq

)
8. Set δ := δ+ and δ+ := 〈(�rx, �rq), (�rx, �rq); (�sx, �sq)〉D
9. Set β := δ+/δ

10. Update the search direction(
�dx
�dq

)
:=

(
�rx
�rq

)
+ β

(
�dx
�dq

)

11. Set n := n+ 1
12. end while
13. return (�xx, �xq)

Algorithm 2. Safeguard strategy for selection of scaling parameters σ, τ .

1. Determine an underestimate ‖a‖′ ≤ ‖a‖ and an overestimate k′0 ≥ k0
2. Set σ = 0.9/‖a‖′ and τ = 1.2/(k′0)

2 and scaling rejected := true

3. while scaling rejected do
4. Run the PCG iteration (Algorithm 1)
5. if it fails with δ+ < 0 then
6. Set σ := σ/

√
2 and τ :=

√
2 τ

7. else
8. Set scaling rejected := false

9. end if
10. end while
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3.1. Control constraints. We consider the following optimal control problem
with pointwise control constraints:

(CC)

Minimize
1

2
‖y − yd‖2L2(Ω) +

ν

2
‖u‖2L2(Ω)

s.t.

{
−y + y = u in Ω,

∂ny = 0 on Γ

and ua ≤ u ≤ ub a.e. in Ω.

Here, ν > 0 denotes the control cost parameter, ∂n is the normal derivative on the
boundary, and ua and ub are the lower and upper bounds for the control variable u.
The first-order system of necessary and sufficient optimality conditions of (CC) can
be expressed as follows (compare [21, section 2.8.2]):

−p+ p = −(y − yd) in Ω, ∂np = 0 on Γ,(3.1a)

ν u− p+ ξ = 0 a.e. in Ω,(3.1b)

−y + y = u in Ω, ∂ny = 0 on Γ,(3.1c)

ξ −max{0, ξ + c (u− ub)} −min{0, ξ − c (ua − u)} = 0 a.e. in Ω(3.1d)

for any c > 0. In (3.1), p denotes the adjoint state, and ξ is the Lagrange multiplier
associated with the control constraints. Note that (3.1d) is equivalent to the two
pointwise complementarity systems

0 ≤ ξ+, u− ub ≤ 0, ξ+(u− ub) = 0,

0 ≤ ξ−, ua − u ≤ 0, ξ−(ua − u) = 0.

It is well known that (3.1) enjoys the Newton differentiability property [11], at
least for c = ν. Hence, a generalized (semismooth) Newton iteration can be applied.
We focus on the preconditioned solution of the generalized Newton steps. Due to
the structure of the nonsmooth part (3.1d), the Newton iteration can be expressed
in terms of an active set strategy. Given an iterate (yk, uk, pk, ξk), the active sets are
determined by

(3.2)
A+

k = {x ∈ Ω : ξk + c (uk − ub) > 0},
A−

k = {x ∈ Ω : ξk − c (ua − uk) < 0},

and the inactive set is Ik = Ω\ (A+
k ∪A−

k ). The Newton step for the solution of (3.1),
given in terms of the new iterate, reads as follows:

(3.3)

⎛⎜⎜⎝
I · L∗ ·
· ν I −I I
L −I · ·
· c χAk

· χIk

⎞⎟⎟⎠
⎛⎜⎜⎝
yk+1

uk+1

pk+1

ξk+1

⎞⎟⎟⎠ =

⎛⎜⎜⎝
yd
0
0

c
(
χA+

k
ub + χA−

k
ua

)
⎞⎟⎟⎠ ,

where χA+
k
, χA−

k
, and χAk

denote the characteristic functions of A+
k , A−

k , and Ak =

A+
k ∪A−

k , respectively, and L represents the differential operator of the PDE constraint
in (CC). In the present example, we have L = −+ I with homogeneous Neumann
boundary conditions in weak form, considered as an operator fromH1(Ω) intoH1(Ω)∗.
We emphasize that the Newton system (3.3) changes from iteration to iteration due
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to changes in the active sets. Since, however, we focus here on the efficient solution
of individual Newton steps, we drop the iteration index from now on.

From (3.3) one infers ξI = 0 (the restriction of ξ to the inactive set I), and
we eliminate this variable from the problem. The Newton system then attains an
equivalent symmetric saddle point form:

(3.4)

⎛⎜⎜⎝
I · L∗ ·
· ν I −I χA
L −I · ·
· χA · ·

⎞⎟⎟⎠
⎛⎜⎜⎝

y
u
p
ξA

⎞⎟⎟⎠ =

⎛⎜⎜⎝
yd
0
0

χA+ ub + χA− ua

⎞⎟⎟⎠ ,

which fits into our framework (1.2) with the identifications

x = (y, u) ∈ X = H1(Ω)× L2(Ω),

q = (p, ξA) ∈ Q = H1(Ω)× L2(A)

and bilinear forms

a
(
(y, u), (z, v)

)
:= (y, z)L2(Ω) + ν (u, v)L2(Ω),(3.5a)

b
(
(y, u), (p, ξA)

)
:= (y, p)H1(Ω) − (u, p)L2(Ω) + (u, ξA)L2(A).(3.5b)

Lemma 3.1. The bilinear forms a(·, ·) and b(·, ·) satisfy assumptions (1.3a)–(1.3e)
with constants ‖a‖ = max{1, ν}, α0 = ν/2, ‖b‖ = 2, and k0 = 1/2, independent of
the active set A.

Proof. The proof uses the Cauchy–Schwarz and Young inequalities. The bound-
edness of a follows from

a
(
(y, u), (z, v)

) ≤ ‖y‖L2(Ω)‖z‖L2(Ω) + ν ‖u‖L2(Ω)‖v‖L2(Ω)

≤ (‖y‖2L2(Ω) + ν ‖u‖2L2(Ω)

)1/2(‖z‖2L2(Ω) + ν ‖v‖2L2(Ω)

)1/2
≤ max{1, ν}‖(y, u)‖X‖(z, v)‖X .

To verify the coercivity of a, let (y, u) ∈ kerB. Then, in particular, (y, p)H1(Ω) =
(u, p)L2(Ω) holds for all p ∈ H1(Ω), and from p = y we obtain the a priori estimate
‖y‖H1(Ω) ≤ ‖u‖L2(Ω). This implies

a
(
(y, u), (y, u)

)
= ‖y‖2L2(Ω) + ν ‖u‖2L2(Ω)

≥ ν

2
‖y‖2H1(Ω) +

ν

2
‖u‖2L2(Ω) =

ν

2
‖(y, u)‖2X .

The boundedness of b follows from

b
(
(y, u), (p, ξA)

) ≤ ‖y‖H1(Ω)‖p‖H1(Ω) + ‖u‖L2(Ω)‖p‖L2(Ω) + ‖u‖L2(A)‖ξ‖L2(A)

≤ (‖y‖H1(Ω) + ‖u‖L2(Ω)

)(‖p‖H1(Ω) + ‖ξ‖L2(A)

)
≤ 2 ‖(y, u)‖X‖(p, ξA)‖Q.

Finally, we obtain the inf–sup condition for b as follows: For given (p, ξA) ∈ Q, choose
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y = p and u = ξA (by extending it by zero outside of A). Then

b
(
(y, u), (p, ξA)

) ≥ ‖p‖2H1(Ω) − ‖ξA‖L2(Ω)‖p‖L2(Ω) + ‖ξA‖2L2(A)

≥ ‖p‖2H1(Ω) −
1

2
‖ξA‖2L2(Ω) −

1

2
‖p‖2L2(Ω) + ‖ξA‖2L2(A)

≥ 1

2
‖p‖2H1(Ω) +

1

2
‖ξA‖2L2(A)

=
1

2

(‖y‖2H1(Ω) + ‖u‖2L2(Ω)

)1/2(‖p‖2H1(Ω) + ‖ξA‖2L2(Ω)

)1/2
=

1

2
‖(y, u)‖X‖(p, ξA)‖Q.

The leading term in the estimate for the preconditioned condition number (see
(2.5) and (2.6)) is thus

κCC(K̂−1K) ∼ β

α
= 32 ν−1max{1, ν}.

Remark 3.2. The treatment of an additional term γ ‖u‖L1(Ω) in the objective of
(CC) is easily possible. For positive γ, this term promotes so-called sparse optimal
controls, which are zero on nontrivial parts of the domain. The corresponding opti-
mality system can be found in [20, Lemma 2.2]. The Newton iteration for the solution
of this extended problem requires two changes: First, the active sets are determined
from

A+ = {x ∈ Ω : ξ − γ + c (u− ub) > 0},
A− = {x ∈ Ω : ξ + γ − c (ua − u) < 0},
A0 = {x ∈ Ω : −ξ − γ ≤ c u ≤ −ξ + γ},

and A := A+ ∪ A− ∪ A0. Note that A0 is the set where the updated control is zero.
Second, at the end of each Newton step, ξI is updated according to ξI = χI+ γ−χI− γ,
where I+ is the subset of Ω where c u+ ξ − γ is between 0 and ub, and similarly for
I−.

In particular, the Newton system (3.4) remains the same, and thus problems with
an additional sparsity term can be solved just as efficiently as problems with control
constraints alone.

Discretization. We now turn to the discretization of (CC) and the Newton step
(3.4) by a Galerkin method. We introduce

Mh = (ϕi, ϕj)L2(Ω) (mass matrix),(3.6a)

Lh = Kh = (∇ϕi,∇ϕj)L2(Ω) + (ϕi, ϕj)L2(Ω) (stiffness matrix),(3.6b)

where {ϕi}ni=1 is a basis of a discrete subspace of H1(Ω). The coordinate vector of y
w.r.t. this basis is denoted by �y. Here and throughout, Lh corresponds to the differ-
ential operator, and Kh represents the scalar product in the state space H1(Ω). For
simplicity, we discretize all variables by piecewise linear Lagrangian finite elements.
A straightforward modification would allow a different discretization of the control
space, e.g., by piecewise constants.
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The discrete counterpart of (CC) is

(CCh)

Minimize
1

2
(�y − �yd)

�Mh(�y − �yd) +
ν

2
�u�Mh�u

s.t. Lh�y −Mh�u = �0

and �ua ≤ �u ≤ �ub.

Its optimality conditions are a discrete variant of (3.1):

L�
h �p = −Mh(�y − �yd),(3.7a)

ν Mh�u−Mh�p+ �μ = 0,(3.7b)

Lh�y = Mh�u,(3.7c)

�μ−max{0, �μ+ c (�u− �ub)} −min{0, �μ− c (�ua − �u)} = 0,(3.7d)

and a Newton step applied to (3.7) leads to the following discrete linear system:⎛⎜⎜⎝
Mh · L�

h ·
· ν Mh −Mh I
Lh −Mh · ·
· c χA · χI

⎞⎟⎟⎠
⎛⎜⎜⎝
�y
�u
�p
�μ

⎞⎟⎟⎠ =

⎛⎜⎜⎝
Mh�yd
0
0

c
(
χA+ �ub + χA− �ua

)
⎞⎟⎟⎠ .

On the discrete level, χA is a diagonal 0-1 matrix. As in the continuous setting, we
infer �μI = �0 and eliminate this variable to obtain

(3.8)

⎛⎜⎜⎝
Mh · L�

h ·
· ν Mh −Mh P�

A
Lh −Mh · ·
· PA · ·

⎞⎟⎟⎠
⎛⎜⎜⎝

�y
�u
�p
�μA

⎞⎟⎟⎠ =

⎛⎜⎜⎝
Mh�yd
0
0

PA+ �ub + PA− �ua

⎞⎟⎟⎠ .

PA is a rectangular matrix consisting of those rows of χA which belong to the active
indices, and similarly for PA± .

Some comments concerning the discrete system (3.8) are in order. The variable
�μ is the Lagrange multiplier associated with the discrete constraint �ua ≤ �u ≤ �ub,
and the relations �μ = P�

A �μA and �μA = PA �μ hold. If we set �ξ = M−1
h �μ, then �ξ is

the coordinate vector of a function in L2(Ω) which approximates the multiplier ξ in
the continuous system (3.1d). This observation is reflected by the choice of norms
on the discrete level; see (3.9).

With the settings

�x = (�y, �u) ∈ Xh = R
n × R

n,

�q = (�p, �μA) ∈ Qh = R
n × R

nA

and bilinear forms

ah
(
(�y, �u), (�z, �v)

)
:= �z�Mh�y + ν �v�Mh�u,

bh
(
(�y, �u), (�p, �μA)

)
:= �p�Lh�y − �p�Mh�u+ �μ�

A(PA�u),

the discrete problem fits into the framework (1.2). As mentioned above, care has to be
taken in choosing an appropriate norm for the discrete multiplier �μA. We use scalar
products in the spaces Xh and Qh represented by the following matrices:

(3.9) X =

(
Kh

Mh

)
and Q =

(
Kh

P�
AM−1

h PA

)
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with Mh and Kh defined in (3.6).
Due to the use of a conforming Galerkin approach, the constants ‖a‖ and ‖b‖

on the discrete level are the same as in Lemma 3.1, and, in particular, they are
independent of the mesh size h. The same can be shown for α0 and k0.

Note that the equation PAM−1
h P�

A �μA = �bA is equivalent to the linear system

(3.10)

(
Mh P�

A
PA 0

)(
�r
�μA

)
= −

(
�0
�bA

)
.

This fact is exploited in the construction of the preconditioner below.

Preconditioner. We recall that the preconditioner has the form

K̂ =

(
I 0

BÂ−1 I

)(
Â B�

0 −Ŝ

)

and that the framework of [19] requires only correctly scaled preconditioners for the
scalar product matrices defined in (3.9). We use

(3.11) Â =
1

σ

(
K̂h

M̂h

)
and Ŝ =

σ

τ

(
K̂h

PAM−1
h P�

A

)
with scaling parameters

σ = 0.9/‖a‖, τ = 1.2/k20 ,

similarly as in [19]. For the present example, valid constants ‖a‖ and k0 are known
from Lemma 3.1. For more complicated examples, an estimation strategy for these
constants on the basis of generalized eigenvalue problems is described in section 4.1.
Algorithm 3 describes in detail the application of the preconditioner (3.11) in terms
of

(3.12) K̂
(
�rx
�rq

)
=

(
�sx
�sq

)
,

where �rx = (�ry , �ru), �rq = (�rp, �rμA), and �sx = (�sy, �su), �sq = (�sp, �sμA) hold. The
building blocks of the preconditioner are as follows:

• (K̂h)
−1�b is realized by one multigrid V-cycle applied to the linear system with

the scalar product matrix Kh (representing the discrete H1(Ω) scalar prod-

uct) and right-hand side�b. A number of νGS forward and reverse Gauss–Seidel
smoothing steps are used, starting from an initial guess of �0. In Algorithm 3,
the evaluation of (K̂h)

−1�b is denoted by multigrid(�b).

• (M̂h)
−1�b corresponds to νSGS symmetric Gauss–Seidel steps for the mass

matrix Mh (representing the scalar product in L2(Ω)) with right-hand side �b

and with an initial guess �0. This is denoted by SGS(�b) in Algorithm 3.

• As noted above, the evaluation of (PAM−1
h P�

A )−1�bA is equivalent to solving
the linear system (3.10). This is achieved efficiently by the preconditioned
projected conjugate gradient (PPCG) method [9] in the standard scalar prod-
uct, where (

diag(Mh) P�
A

PA 0

)
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serves as a preconditioner. In Algorithm 3, this corresponds to the call
PPCG(�bA,A+,A−). In practice, we use a relative termination tolerance of
10−12 for the residual in PPCG, which took at most 13 steps to converge in
all examples. The reason for solving (3.10) practically to convergence is that
intermediate iterates in conjugate gradient iterations depend nonlinearly on
the right-hand side, and thus early termination would yield a nonlinear pre-
conditioner Ŝ. Note that the projected conjugated gradient method requires
an initial iterate consistent with the second equation PA �r = −�bA in (3.10).

Due to the structure of PA, we can simply use �rA = −�bA, �rI = �0, and �μA = �0
as initial iterate.

Before moving on to problems with different types of constraints, we briefly sum-
marize the main features of the PCG iteration applied to the solution of the Newton
step (3.8).

Remark 3.3.

1. The main efforts in every application of the preconditioner are the three
multigrid cycles. No PDEs need to be solved. Moreover, the method is of
linear complexity in the number of unknowns.

2. In the case, where the control u and thus the Lagrange multiplier ξ are dis-
cretized by piecewise constant functions, the mass matrix Mh in the scalar
product X becomes a diagonal matrix, and preconditioning for the blocks Mh

and PAM−1
h P�

A becomes trivial.
3. We recall that the matrix B in Algorithm 3 denotes the (2,1) block of (3.8),

i.e.,

B =

(
Lh −Mh

· PA

)
in the control-constrained case presently considered. For the subsequent ex-
amples, B changes, but no other modifications to Algorithm 3 are required.

Algorithm 3. Application of the preconditioner according to (3.12).

Input: right-hand sides �sx = (�sy, �su) and �sq = (�sp, �sμA), scaling parameters σ, τ , and
active sets A+,A−

Output: solution �rx = (�ry , �ru) and �rq = (�rp, �rμA) of (3.12)

1. �r ′
y := multigrid(σ �sy)

2. �r ′
�u := SGS(σ �su)

3.

(
�s ′
p

�s ′
μA

)
:= B

(
�r ′
y

�r ′
u

)
−
(

�sp
�sμA

)
4. �rp := multigrid(τ �s ′

p/σ)

5. �rμA := PPCG(τ �s ′
μA/σ,A+,A−)

6.

(
�s ′
y

�s ′
u

)
:=

(
�sy
�su

)
−B

(
�rp
�μA

)
7. �ry := multigrid(σ �s ′

y)

8. �ru := SGS(σ �s ′
u)

9. return �ry, �ru, �rp, �rμA
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3.2. Regularized state-constrained problems: Mixed constraints. In this
section, we address optimal control problems with mixed control-state constraints.
They can be viewed as one way of regularizing problems with pure state constraints;
see [16]:

(MC)

Minimize
1

2
‖y − yd‖2L2(Ω) +

ν

2
‖u‖2L2(Ω)

s.t.

{
−y + y = u in Ω,

∂ny = 0 on Γ

and ya ≤ ε u+ y ≤ yb a.e. in Ω.

We point out the main differences from the control-constrained case. The first-order
system of necessary and sufficient optimality conditions of (MC) can be expressed as
follows:

−p+ p = −(y − yd)− ξ in Ω, ∂np = 0 on Γ,
(3.13a)

ν u− p+ ε ξ = 0 a.e. in Ω,
(3.13b)

−y + y = u in Ω, ∂ny = 0 on Γ,
(3.13c)

ξ −max{0, ξ + c (ε u+ y − yb)} −min{0, ξ − c (ya − ε u− y)} = 0 a.e. in Ω.
(3.13d)

A Newton step for the solution of (3.13) reads (in its symmetric form) as⎛⎜⎜⎝
I · L∗ χA
· ν I −I ε χA
L −I · ·
χA ε χA · ·

⎞⎟⎟⎠
⎛⎜⎜⎝

y
u
p
ξA

⎞⎟⎟⎠ =

⎛⎜⎜⎝
yd
0
0

χA+ yb + χA− ya

⎞⎟⎟⎠
with active sets similar to as in (3.2). The Newton system fits into our framework
(1.2) with the identifications

x = (y, u) ∈ X = H1(Ω)× L2(Ω),

q = (p, ξA) ∈ Q = H1(Ω)× L2(A)

and bilinear forms

a
(
(y, u), (z, v)

)
:= (y, z)L2(Ω) + ν (u, v)L2(Ω),

b
(
(y, u), (p, ξA)

)
:= (y, p)H1(Ω) − (u, p)L2(Ω) + (y, ξA)L2(A) + ε (u, ξA)L2(A).

Lemma 3.4. The bilinear forms a(·, ·) and b(·, ·) satisfy assumptions (1.3a)–(1.3e)
with constants ‖a‖ = max{1, ν}, α0 = ν/2, ‖b‖ = 2 max{1, ε}, and k0 = min{1, ε},
independent of the active set A.

Proof. The bilinear form a is the same as in (3.5a); hence we refer the reader
to the proof of Lemma 3.1 for ‖a‖ and α0. (Although kerB has changed, we used
only the condition Ly− u = 0 in the proof of Lemma 3.1, which remains valid.) The
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boundedness of b follows from

b
(
(y, u), (p, ξA)

) ≤ ‖y‖H1(Ω)‖p‖H1(Ω) + ‖u‖L2(Ω)‖p‖L2(Ω) + ‖y‖L2(A)‖ξA‖L2(A)

+ ε ‖u‖L2(A)‖ξA‖L2(A)

≤ (‖y‖H1(Ω) +max{1, ε} ‖u‖L2(Ω)

)(‖p‖H1(Ω) + ‖ξA‖L2(A)

)
≤ 2 max{1, ε} ‖(y, u)‖X‖(p, ξA)‖Q.

Finally, we obtain the inf–sup condition for b as follows: For given (p, ξA) ∈ Q, choose
y = p and u = ξA (by extending it by zero outside of A). Then

b
(
(y, u), (p, ξA)

)
= (p, p)H1(Ω) − (ξA, p)L2(Ω) + (p, ξA)L2(A) + ε (ξA, ξA)L2(A)

≥ ‖p‖2H1(Ω) + ε ‖ξA‖2L2(A)

≥ min{1, ε}‖(y, u)‖X‖(p, ξA)‖Q.
The leading term in the estimate for the preconditioned condition number is thus

κMC(K̂−1K) ∼ β

α
= 8

max{1, ν}
ν

(
max{1, ε}
min{1, ε}

)2

,

which scales like ε−2 for small ε.

Discretization. The discretization is carried out like in section 3.1. The discrete
Newton step becomes⎛⎜⎜⎝

Mh · L�
h P�

A
· ν Mh −Mh ε P�

A
Lh −Mh · ·
PA ε PA · ·

⎞⎟⎟⎠
⎛⎜⎜⎝

�y
�u
�p
�μA

⎞⎟⎟⎠ =

⎛⎜⎜⎝
Mh�yd
0
0

PA+ �yb + PA− �ya

⎞⎟⎟⎠ .

The scalar products and thus the preconditioner are the same (with different constants
σ and τ) as in the control-constrained case; see section 3.1. We point out only that
now

B =

(
Lh −Mh

PA ε PA

)
has to be used in Algorithm 3.

3.3. Regularized state-constrained problems: Moreau–Yosida approach.
An alternative regularization approach for state-constrained problems is given in terms
of the Moreau–Yosida penalty function (see [13])

(MY)

Minimize
1

2
‖y − yd‖2L2(Ω) +

ν

2
‖u‖2L2(Ω) +

1

2ε
‖max{0, y − yb}‖2L2(Ω)

+
1

2ε
‖min{0, y − ya}‖2L2(Ω)

s.t.

{
−y + y = u in Ω,

∂ny = 0 on Γ.

The first-order system of necessary and sufficient optimality conditions of (MY) can
be expressed as follows:

−p+ p = −(y − yd)− ξ in Ω, ∂np = 0 on Γ,(3.14a)

ν u− p = 0 a.e. in Ω,(3.14b)

−y + y = u in Ω, ∂ny = 0 on Γ(3.14c)
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with the abbreviation ξ = ε−1max{0, y − yb} + ε−1 min{0, ya − y}. A Newton step
for the solution of (3.14) reads as⎛⎝I + χA

ε · L∗

· ν I −I
L −I ·

⎞⎠⎛⎝y
u
p

⎞⎠ =

⎛⎝yd +
1
ε

(
χA+ yb + χA− ya

)
0
0

⎞⎠
with active sets

A+ = {x ∈ Ω : y − yb > 0},
A− = {x ∈ Ω : ya − y < 0}.

The variables and bilinear forms are now given by

x = (y, u) ∈ X = H1(Ω)× L2(Ω),

q = p ∈ Q = H1(Ω)

and

a
(
(y, u), (z, v)

)
:= (y, z)L2(Ω) + ε−1(y, z)L2(A) + ν (u, v)L2(Ω),

b
(
(y, u), p

)
:= (y, p)H1(Ω) − (u, p)L2(Ω).

Note that, in contrast to the mixed-constrained approach (section 3.2), the regu-
larization parameter ε now appears in the bilinear form a instead of b.

Lemma 3.5. The bilinear forms a(·, ·) and b(·, ·) satisfy assumptions (1.3a)–(1.3e)
with constants ‖a‖ = max{1+ ε−1, ν}, α0 = ν/2, ‖b‖ =

√
2, and k0 = 1, independent

of the active set A.
The proof is similar to that of Lemmas 3.1 and 3.4 and is therefore omitted. The

leading term in the estimate for the preconditioned condition number is now

κMY(K̂−1K) ∼ β

α
= 8

max{1 + ε−1, ν}
ν

,

which scales like ε−1 for small ε.
As mentioned before, problems (MC) and (MY) can be viewed as regularized ver-

sions of the state-constrained problem (SC) below. Provided that the regularization
errors are comparable for identical values of ε, the estimates for the preconditioned
condition number clearly favor the Moreau–Yosida approach; see Figure 1. This is
confirmed by the numerical results in section 4.

Discretization. The discrete counterpart of (MY) is

(MYh)

Minimize
1

2
(�y − �yd)

�Mh(�y − �yd) +
ν

2
�u�Mh�u

+
1

2ε
max{0, �y − �yb}�Mh max{0, �y − �yb}

+
1

2ε
min{0, �y − �ya}�Mhmin{0, �y − �ya}

s.t. Lh�y = Mh�u,

and its optimality conditions read as

L�
h �p = −Mh(�y − �yd)− χA+ε−1Mhmax{0, �y − �yb}(3.15a)

−χA−ε−1Mh min{0, �y − �ya},
ν Mh�u−Mh�p = 0,(3.15b)

Lh�y = Mh�u,(3.15c)
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Fig. 1. Comparison of preconditioned condition numbers for mixed control-state constraints
(left) and Moreau–Yosida regularization (right) as functions of the control cost coefficient ν and the
regularization parameter ε.

where χA+ are the indices where �y − �yb > 0, and similarly for χA− . A Newton step
for (3.15) amounts to solving⎛⎝Mh + χA

ε MhχA · L�
h

· ν Mh −Mh

Lh −Mh ·

⎞⎠⎛⎝�y
�u
�p

⎞⎠
=

⎛⎝Mh�yd +
1
ε

(
χA+MhχA+�yb + χA−MhχA−�ya

)
0
0

⎞⎠ .

The preconditioner is the same as described in Algorithm 3, with the exception that
now

B =
(
Lh −Mh

)
is used, and step 5 can be omitted since no Lagrange multipliers associated with
inequality constraints are present in the Moreau–Yosida case.

3.4. State-constrained problems. We briefly address an optimal control prob-
lem with pointwise state constraints:

(SC)

Minimize
1

2
‖y − yd‖2L2(Ω) +

ν

2
‖u‖2L2(Ω)

s.t.

{
−y + y = u in Ω,

∂ny = 0 on Γ

and ya ≤ y ≤ yb in Ω.

It is well known that (SC) does not permit the same function space setting as in
the previous sections. The associated Lagrange multiplier is only a measure [5], and
the adjoint state belongs to W 1,s(Ω), where s < N/(N − 1). Moreover, there is
no theoretical foundation of using Newton-type methods in function space for the
solution of (SC). Problems (MC) and (MY) can be considered regularized versions of
(SC) which have better regularity properties.
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In fact, the well posedness of a saddle point problem (1.2) is equivalent to the
Lipschitz dependence of its unique solutions on the right-hand side (F,G). Lipschitz
stability for the adjoint state p, however, can be expected only w.r.t. L2(Ω); see [10].

For completeness, we state the discrete optimality system

L�
h �p = −Mh(�y − �yd) + �μ,

ν Mh�u−Mh�p = 0,

Lh�y = Mh�u,

�μ−max{0, �μ+ c (�y − �yb)} −min{0, �μ− c (�ya − �y)} = 0

and the discrete Newton step⎛⎜⎜⎝
Mh · L�

h P�
A

· ν Mh −Mh ·
Lh −Mh · ·
PA · · ·

⎞⎟⎟⎠
⎛⎜⎜⎝

�y
�u
�p
�μA

⎞⎟⎟⎠ =

⎛⎜⎜⎝
Mh�yd
0
0

PA+ �yb + PA− �ya

⎞⎟⎟⎠ .

Note that the bilinear forms associated with the Newton step allow the same con-
stants ‖a‖, α0, and ‖b‖ as in the control-constrained example, Lemma 3.1. However,
k0 tends to zero as the mesh size decreases.

4. Numerical results. In this section, we present several numerical experi-
ments. Each of the examples emphasizes one particular aspect of our previous anal-
ysis.

4.1. Algorithmic details. We begin by describing the algorithmic details which
are common to all examples, unless otherwise mentioned. The implementation was
done in MATLAB.

Discretization. In the two-dimensional (2D) case, the discretization was carried
out using piecewise linear and continuous (P1) finite elements on polyhedral approx-
imations of the unit circle Ω ⊂ R

2. The assembly of mass and stiffness matrices, as
well as the construction of the prolongation operator (linear interpolation) for the
multigrid preconditioner, was left to the PDE Toolbox. The restriction operator is
the transpose of the prolongation.

In the 3D case, the underlying domain is Ω = (−1, 1)3 ⊂ R
3 and the discretization

is based on the standard second-order finite difference stencil on a uniform grid.
The prolongation operator is again obtained by linear interpolation, with restriction
chosen as its transpose. In all 3D examples, we used homogeneous Dirichlet (instead of
Neumann) boundary conditions and the differential operator − (instead of −+I).
As a consequence, the constant k0 in the inf–sup condition for the bilinear (constraint)
form b is different from those specified in the examples in section 3. In any case, the
constants ‖a‖ and k0 relevant for the scaling of the preconditioner were estimated
numerically; see below.

Preconditioner. As described in section 3, the preconditioner K is composed
of individual preconditioners for the matrices representing the scalar products in the
spaces X = H1(Ω)× L2(Ω) and Q = H1(Ω)× L2(A), or Q = H1(Ω) in the Moreau–
Yosida case. We used a geometric multigrid approach as a building block in the
preconditioner for the stiffness matrix Kh representing the H1(Ω) scalar product;
compare Algorithm 3. Each application of the preconditioner consisted of one V-
cycle. The matrices on the coarser levels were generated by Galerkin projection (two
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dimensions) or by reassembling (three dimensions), respectively. A direct solver was
used on the coarsest level, which held 33 degrees of freedom in the 2D case and 27
in the 3D case. We used νGS = 3 forward Gauss–Seidel sweeps as presmoothers
and the same number of backward Gauss–Seidel sweeps as postsmoothers, which
retain the symmetry of the preconditioner. The mass matrix belonging to L2(Ω) was
preconditioned using νSGS = 1 symmetric Gauss–Seidel sweep. As pointed out in
section 3, the appropriate scalar product for L2(A) is given by PAM−1

h P�
A . We solve

systems with this matrix in their equivalent form (3.10) by the PPCG method [9],
where (3.1) serves as a preconditioner. The relative termination tolerance for the
residual was set to 10−12. In fact, we found the cgs implementation in MATLAB
preferable to PCG here, although every iteration requires two matrix-vector products.

Estimation of ‖a‖ and k0 and selection of scaling parameters σ and τ .
As described in section 2, the positive definiteness of the preconditioned saddle point
matrix relies on a proper scaling of the preconditioner building blocks X̂ and Q̂. In
turn, a proper choice of scaling parameters σ and τ requires an estimate of ‖a‖ and
k0. Such estimates may be available analytically in some situations (see the examples
in section 3). If they are not, they can be easily obtained as follows. We recall that
‖a‖ and k0 have to satisfy

A � ‖a‖X and BX−1B�� k20 Q,

and smaller values of ‖a‖ and larger values of k0 are preferred. On the discrete level,
viable estimates are obtained by computing the extreme eigenvalues of two generalized
eigenvalue problems:

(4.1)
‖a‖′ := eigs(A,X,1,’lm’);

(k′0)
2 := 1/eigs(Q,B*inv(X)*B’,1,’lm’);

in MATLAB notation. Naturally, these computations should be carried out for coarse
level matrices A, X , B, and Q. Estimates for the scaling parameters are then com-
puted from σ := 0.9/‖a‖′ and τ := 1.2/(k′0)2.

This adaptive parameter selection strategy was applied in all numerical examples,
combined with the safeguarded choice of σ and τ (Algorithm 2), which seldomly
became relevant. Note that the constants ‖a‖ and k0 can change with the active
sets. We thus estimated them in every step of the outer Newton iteration to take full
advantage of the adaptive strategy.

Remark 4.1. The quantities ‖a‖ and k0 are properties of the bilinear forms a(·, ·)
and b(·, ·). Given appropriate discretizations, the same constants are also viable on
all discrete levels. Nevertheless, the optimal constants, i.e., the smallest possible ‖a‖
and the largest possible k0, will be slightly different for different grid levels.

In the following numerical examples, it turns out that this dependence is most pro-
nounced for the problem with convection (Example 4.3) and in the mixed-constrained
approximation of a purely state-constrained problem (Example 4.4). Since (4.1) finds
the optimal constants on a coarse grid, they may not be valid on a fine grid for these
examples. And thus the safeguarding strategy (Algorithm 2) may reject the initial
scaling parameters σ and τ .

PCG method. We used our own implementation of the PCG method according
to Algorithm 1, with an absolute termination tolerance of εabs = 10−10. In every 50th
iteration, the update of the residual �s in step 7 is replaced by a fresh evaluation of
the residual, and the update of the preconditioned residual �r is replaced by K̂−1�s, in
order to prevent rounding errors from accumulating.
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Newton iteration. Since the optimality systems for all examples in section 3
are nonlinear, Newton’s method was applied for their solution. The parameter in the
active set strategy was chosen as c = 1. We recall that we focus here entirely on
the efficient solution of individual Newton steps. Nevertheless, Newton’s method was
iterated until the convergence criterion ‖r‖L2 ≤ 10−8 was met, where r denotes the
residual of the nonlinear equations in the respective optimality system. The reported
run times and iteration numbers are averaged over all Newton steps taken for one
particular example.

Computational environment. All computations were carried out on a com-
pute server with 4 Intel Xeon CPUs (3 GHz) and 64 GB of RAM under MATLAB
Version 7.9 (R2009b).

4.2. Examples.

Example 4.2 (comparison with direct solver). In this example, we compare the
performance of the PCG solver with the sparse direct solver in MATLAB. The control-
constrained example (CC) was set up with parameter ν = 10−2 and data ua = 0,
ub = 2, and yd = 1, where |x1| ≤ 0.5 and yd = 0 elsewhere in the 2D case. In the 3D
case, ua = 0, ub = 2.5, and yd = 1, where |x1| ≤ 0.5 and yd = −2 elsewhere. This data
was chosen such that both upper and lower active sets are present at the solution. A
hierarchy of uniformly refined grids was used, which resulted in a dimension of the
state variable up to 100, 000 in the 2D case and up to 250, 000 in the 3D case. The
overall number of unknowns for the direct solver applied to (3.4) is between three and
four times these numbers, depending on the size of the active sets.

The plots in Figure 2 show that the direct solver is preferable to PCG in the
2D case for the discretization sizes used. For problem sizes larger than those shown,
memory issues will eventually work in favor of the PCG solver. In the 3D case, the
PCG iteration is clearly superior even for moderate discretization levels. This was to
be expected due to an increased amount of fill in when factoring 3D finite element and
finite difference matrices. The plots also confirm the linear complexity of the PCG
iteration in terms of the problem size. Approximately 100 (45) PCG iterations per
Newton step were required in the 2D (3D) cases. The convergence history is shown
in Figure 3.

In what follows, we consider only 3D examples. There will be no further compar-
ison with direct solvers due to their memory and run time limitations with large 3D
problems.

Example 4.3 (a problem with convection). We consider an optimal control prob-
lem with an additional convection term in the bilinear form

b
(
(y, u), (p, ξA)

)
:= (y, p)H1(Ω) + (β · ∇y, p)L2(Ω) − (u, p)L2(Ω) + (u, ξA)L2(A).

Note that we do not change the scalar products, and thus there is no need to change
the preconditioner. The boundedness constant becomes ‖b‖ = 2 (1 + ‖β‖L∞(Ω)), and
thus we expect a deterioration of the convergence behavior for large values of β.
Upwind finite differences were used in Lh to obtain stable discretizations. Note that
this also stabilizes the adjoint operator L�

h , which has convection direction −β. The
problem data is ν = 10−2, yd as in Example 4.2, and the bounds were chosen as
−ua = ub = ∞. We took

β ∈
{(

10
0
0

)
,

(
100
0
0

)
,

(
1000

0
0

)}
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Fig. 2. The plots show the average solution time per Newton step vs. the dimension of the
discretized state space. We compare the PCG method to the sparse direct solver of MATLAB applied
to the linearized optimality system (3.4) of (CC) in the 2D (left) and 3D (right) cases. The setup
is described in Example 4.2. The triangle has slope 1, and it visualizes the linear complexity of the
PCG solver w.r.t. the number of unknowns.
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Fig. 3. The plots show the convergence history of the PCG residual in the 2D (left) and 3D
(right) cases on the finest grid for all Newton steps. The setup is described in Example 4.2.

as convection directions.

We begin by observing that the optimal values of k0 in (2.1d) on the discrete level
depend on the mesh size h in this example. This seems to be an effect introduced by
the upwind discretization, as it is not present in (unstable) discretizations by central
differences. As a consequence, the safeguarding strategy (Algorithm 2) tended to
reject the initial estimates (4.1) of ‖a‖ and k0, which are obtained from coarse grid
matrices, several times. With β and/or the number of unknowns increasing, the
number of necessary corrections to these initial estimates also increased. And hence,
appropriate values of the scaling parameters σ and τ depend noticeably on the mesh
size in this example.

Figure 4 shows the convergence behavior for various discretization levels and
values of β. For large values of β, we see a pronounced mesh dependence of the
convergence history. As mentioned above, this is due to the upwind stabilization,
which leads to a mesh dependent k0 and thus to a deterioration of the preconditioned
condition number on refined grids.
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Fig. 4. The left plot shows the solution time for the single Newton step vs. the dimension of the
discretized state space in a series of unconstrained problems with convection. The setup is described
in Example 4.3. The right plot displays the convergence history of the PCG residual on various grid
levels for β = (1000, 0, 0)�.

Example 4.4 (comparison of mixed constraints and the Moreau–Yosida approach).
In this example, we compare the performance of the preconditioned conjugate gra-
dient solver for problems (MC) and (MY) in three dimensions. Both problems are
regularized versions of the state-constrained problem (SC), and they are considered
for a decreasing sequence of values for ε. The problem data is as follows: We choose
yb = 0.0 and ya = −∞, ν = 10−2, and yd as in Example 4.2.

Table 1

Comparison of errors introduced by the (MC) and (MY) regularizations of the state-constrained
problem (SC). See Example 4.4. JMC and JMY denote the values of the objective functionals in
problems (MC) and (MY), and J denotes the value of the objective for the unregularized problem
(SC) solved with a direct solver.

ε ‖uMC− u‖L2 ‖uMY− u‖L2 |JMC− J | |JMY− J |
1.00e-01 1.91e+00 1.02e+00 7.04e-02 2.62e-02

1.00e-02 5.25e-01 3.65e-01 9.32e-03 8.56e-03

1.00e-03 9.23e-02 8.05e-02 1.01e-03 1.34e-03

1.00e-04 1.18e-02 1.46e-04

1.00e-05 1.29e-03 1.48e-05

Table 1 shows the error introduced by regularization. The error was computed
using a reference solution of the purely state-constrained problem, obtained on an
intermediate grid level. We infer that, for identical values of ε, the errors in the optimal
control and in the objective function are of comparable size for both approaches.
However, the preconditioned condition numbers are dramatically different. We recall
from section 3 that

κMC(K̂−1K) ∼ ν−1 ε−2,

κMY(K̂−1K) ∼ ν−1 (1 + ε−1).

We thus expect the PCG iteration numbers for the (MC) case to be significantly
higher than for the (MY) case. This is confirmed by our numerical experiments; see
Figures 5 and 6.
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Fig. 5. The plot shows the average solution time per Newton step vs. the dimension of the
discretized state space. Both regularization approaches (MC) and (MY) are compared for various
levels of the regularization parameter ε. The setup is described in Example 4.4.

In the mixed-constrained case (MC), the magnitude of the preconditioned con-
dition number at ε = 10−3 has several negative effects. First, we had to restrict the
number of PCG steps to 3000. Beyond this iteration number, there was no further
reduction of the residual. This is turn led to an increased number of Newton steps
(not shown) and thus to an overall increased solution time. Moreover, as discussed in
Remark 4.1, the optimal constant k0 in the mixed-constrained problem depends on
the mesh size in a noticeable way for small values of ε. And thus the estimated scaling
parameters σ and τ had to be corrected several times before the PCG iteration went
through. This led to the superlinear behavior of the run time w.r.t. the number of
state variables in Figure 4.

The situation was significantly better in the Moreau–Yosida case (MY). It was
computationally feasible to reduce ε to 10−5 for this setup. Moreover, the estimated
constants ‖a‖′ and k′0 on a coarse level were viable for the fine levels as well.

In Example 4.4, the largest problem solved for ε = 10−5 has about 30,000 state
variables (and the same number of control and adjoint state variables). The solution
required 11 Newton steps with an average CPU time of about 5.5 minutes per Newton
step. In a practical algorithm, a nested approach should be used, where early Newton
steps operate on a coarse grid. Then the solution of larger problems becomes feasible,
as demonstrated in the following and final example.

Example 4.5 (nested approach for Moreau–Yosida regularization). The setup in
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Fig. 6. The plot shows the convergence history of the PCG residual on the finest grid level for
all Newton steps and ε = 10−3 in the mixed-constrained case and ε = 10−5 in the Moreau–Yosida
case. The setup is described in Example 4.4.

this example is the same as in Example 4.4. We fix ε = 10−4 and solve the Moreau–
Yosida approximation problem on a sequence of grid levels. On each level, we use
the prolongation of the previous solution as an initial guess. The Newton iteration is
driven to convergence on each level.

With this nested approach, it was computationally feasible to increase the num-
ber of state variables to 250,000 (and the same number of control and adjoint state
variables, plus Lagrange multipliers). Three or four Newton steps were carried out
on each level, with an average number of about 450 PCG iterations each. The overall
solution time was approximately 7 hours and 30 minutes, almost all of which was
spent on the finest grid level; see Figure 7 and Table 2 for details. The maximum
constraint violation at the solution is ‖max{0, yh − yb}‖L∞(Ω) = 8.62 · 10−4.

5. Concluding remarks.

Summary and conclusions. In this paper, we studied the application of the
PCG method to linearized optimality systems arising in optimal control problems
with constraints. This becomes possible through the use of appropriate symmetric
indefinite preconditioners and a related scalar product. Problems with elliptic PDEs
and pointwise control and regularized state constraints were considered as prototypical
examples.

It stands out as a feature of this approach that one can simply use properly scaled
preconditioners for the scalar product matrices as building blocks for the precondi-
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Fig. 7. The left plot shows the average solution time per Newton step vs. the dimension of
the discretized state space in a nested approach for the Moreau–Yosida regularization. The setup is
described in Example 4.5. The right plot shows the convergence history of the PCG residual on the
finest grid level for all Newton steps.

Table 2

The table shows the convergence behavior in a nested approach. The setup is described in
Example 4.5. We show the number of degrees of freedom for the state variable on each grid level, the
residual after each Newton step, and the number of PCG iterations required to solve that particular
Newton step. We also show the combined CPU time for all Newton steps on a particular grid level.

Level # dofs ‖r‖L2 # PCG CPU time

2 343 4.37e+00 33

6.74e-04 245

5.13e-04 207

1.68e-10 168 2s

3 3375 5.63e-01 359

3.66e-03 597

2.30e-11 429 22s

4 29791 7.31e-04 357

6.24e-05 455

7.96e-06 408

3.01e-12 436 621s

5 250047 5.47e-05 446

1.75e-06 446

7.12e-09 447 26545s

tioner. Such preconditioners are readily available. In our computational experiments,
we used multigrid cycles for those variables whose natural scalar products involve
derivatives, i.e., the state and adjoint variables. With these preconditioners, the so-
lution of the linearized optimality systems is of linear complexity in the number of
unknowns, and no PDEs need to be solved in the process.

In order to regularize the state-constrained problems, mixed control-state con-
straints and a Moreau–Yosida penalty approach were considered and compared. It
turned out that, from our computational point of view, the penalty approach is clearly
superior to the mixed-constrained approach. At the same level of regularization error,
the preconditioned condition numbers are of order 1/ε for the penalty approach but
of order 1/ε2 with mixed constraints. This was confirmed by numerical experiments.

The solution of state-constrained optimal control problems in three dimensions
is computationally challenging. In fact, numerical results are hardly found in the
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literature. The approach presented here pushes the frontier towards larger problems.
In our computational experiments, the largest problem solved has about 250,000 state
variables, and the same number of control and adjoint state variables, plus Lagrange
multipliers.

Outlook. The main effort in every iteration of the PCG loop (Algorithm 1) is
the application of the preconditioner. In our examples, this essentially amounts to
three multigrid cycles and the solution of PAM−1

h P�
A �μA = �bA (see Algorithm 3).

Thus every PCG iteration is relatively inexpensive. Profiling experiments on the grid
with 250,000 unknowns shows that every call to the preconditioner in our MATLAB
implementation took about 1.4 seconds. Clearly, there is room for improvement in
using another computational environment and parallel preconditioners, e.g., based on
domain decomposition.

The key issue, however, is to reduce the preconditioned condition number and thus
the number of required PCG iterations. In [19], the authors used scalar products which
depend on the control cost parameter ν. In this way, they found very low condition
numbers independent of ν for an unconstrained optimal control problem. They do
not discuss, however, the impact of these norms on accuracy and error tolerances.
The investigation of ε dependent norms for regularized state-constrained problems
in order to reduce the iteration numbers would be worthwhile and is postponed to
follow-up work.

The analysis in [19] relies on the positive semidefiniteness of the (1,1) block A; see
(1.3e). In nonlinear optimal control problems, this condition may not be satisfied, not
even in the vicinity of an optimal solution satisfying second-order sufficient conditions.
Quasi-Newton techniques could be applied to overcome this problem, but this issue
deserves further investigation.

Finally, we found that upwind stabilization of convection dominated problems can
render the inf–sup constant k0 mesh dependent, which results in a mesh dependent
convergence behavior. Other stabilization techniques without this deficiency should
thus be preferred.
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